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The generalized Langevin equation 
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Abstract. The simple Langevin equation describes a process which is both Markovian and 
Gaussian. A generalization of the Langevin equation allows us to deal with processes which 
are projections of n-dimensional Gaussian-Markov processes. The results are formally 
equivalent to generalizations proposed by Kubo in 1966 provided the second fluctuation-- 
dissipation theorem is assumed true. Molecular motion in liquids is discussed in general 
terms and it is concluded that these generalizations of the Langevin equation are not likely 
to be successful. 

1. Introdurtion 

In looking for generalizations of the Langevin equation, we must be aware of all the 
properties of the Langevin equation and we must choose which properties to retain 
in the generalized form. For this reason we begin by stating the important features of 
the Langevin method for dealing with Brownian motion. It is concluded that the 
Brownian motion is characteristically a Gaussian-Markov process and this is generalized 
to motions which are projections of n-dimensional Gaussian-Markov processes. The 
question of the type of probability distribution is very important and is related to the 
Maxwell-Boltzmann law for the distribution of velocities, essentially this means that 
the velocity is Gaussian at a given time. However all distributions for the velocity are 
not Gaussian in general and this is discussed with reference to molecular motion in 
liquids. 

Before we start, it is perhaps worth re-issuing the warning that the correlation func- 
tions used throughout this paper contradict the assumption of stationarity at some 
stage so that it is unwise to assume stationarity of averages in general (see eg Kubo 1966 
or Henery 1971). 

2. Simple Langevin equation 

When a large particle is immersed in a gas, it is subject to a great many collisions by gas 
molecules. These collisions give rise to a viscous damping force which, according to 
Stokes law, is proportional to the velocity of the particle so that the macroscopic law of 
motion for the particle is 

dV 
dt 
-+pv = 0. 
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It is then assumed that the microscopic law of motion is the Langevin equation 

dV 
dt 

-+pV= F 

where F is a random force which is uncorrelated over times greater than z,,. This lack 
of correlation between F ( t )  and F(t  +7) for z > zo is essential in the elementary treatment 
and it gives rise to two basic properties of Brownian motion. The first of these is the 
exponential correlation function R(z) = (V( t )V( t  + T ) )  = ( V 2 )  exp( -Plrl), and the 
second is the Gaussian distribution functions for the velocity at a single time or multi- 
dimensional Gaussianity for the velocities at sets of times (Uhlenbeck and Ornstein 
1930t). Indeed there is a connection between these two properties by virtue of Doob's 
theorem. This states that a one-dimensional Gaussian process is Markovian only 
when the correlation function R(t) has the exponential form R(t) = exp(-Pt). The 
Markov nature of the process arises from the fact that the evolution of the velocity is 
determined only by its instantaneous velocity, and the uncorrelated nature of the 
random force F .  

With these assumptions, a complete description of the statistical properties of V(t )  
is given when we give the mean and autocorrelation function. Of course, if we are not 
dealing with Gaussian processes, we would require more knowledge about the process, 
in general, moments of all orders would be required. A non-Gaussian process with an 
exponential correlation function is the random telegraph signal (Rice 1944, 1945). 

In considering generalizations, it is clear that we must drop either Gaussianity or 
the Markovian property or the exponential correlation function. However there is 
the possibility of considering Markovian processes in multi-dimensional space, and 
by taking an appropriate projection of the multi-dimensional process we obtain a 
generalization of the Brownian motion capable of dealing with any given stochastic 
process to any required degree of accuracy. 

The extension to a many-dimensional process which is Gaussian and Markovian is 
limited, by Doob's theorem, to mixtures of exponential correlation functions. Thus 
if V(t) is an N-dimensional column vector with components Vl(t), Vz(t), . . . , V'(t) we 
form the autocorrelation function (which is an N by N matrix) 

R ( t )  = (V(t)?"'(t+z)). 

Then, according to Doob's theorem (Ming Chen Wang and Uhlenbeck 1945), V(t) is 
Gaussian and Markovian only if 

R(z) = R(0) exp( - Bz) 

where B is a constant matrix which is in general not symmetric. From here on we will 
assume that the eigenvalues Pi of B are distinct and nonzero. In fact, if V( t )  satisfies the 
generalized Langevin equation 

dV 
dt 

-+B'V = F 

then the autocorrelation function R(z) will be of the form required by Doob's theorem. 

t The references Ming Chen Wang and Uhlenbeck (1945), Rice (1944, 1945) and Uhlenbeck and Ornstein 
(1930) are reprinted in N Wax (ed) 1954 Selectedpapers on noise andstochasticprocesses (New York: Dover). 
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To express R(r) as a sum of exponentials, it is necessary to find the eigenvalues pi of 
the matrix B. We can then construct a nonsingular matrix A ,  consisting of the eigen- 
vectors of B, such that A- 'BA is diagonal with diagonal components equal to the pi. 
With this simplification it is easily shown that 

R(z) = R(0)A exp( - A - BA.r)A - 

= R(O)AE(.r)A - 

where E is a diagonal matrix with elements exp( - pir) .  
In the next section we will consider an extension of the Langevin equation involving 

derivatives of V(t )  up to the nth. This equation can be solved using the standard device 
of transforming to a system of n first-order linear equations, thus bringing it within the 
scope of Doob's theorem and the process described will be Gaussian and Markovian. 
For example, the equation 

may be transformed to the n equations 

. . . . . . . . . 
f . . . . . . . . .  

+boy = F 

and these may be solved for the correlation functions using the technique described above. 
However, in this case a simpler method is available and the only use we will make of the 
previous theory is to show that all correlations are linear combinations of exponentials. 

3. Generalizations 

Two possible extensions of the Langevin equation are given in equations (1) and (2) ,  
and we will later consider a third possibility, which, although at first sight different 
from the first two, gives the same results in certain circumstances. In both (1) and (2) 
the force F(t )  is supposed to be correlated and, to simplify the later discussion, we will 
take the force autocorrelation function to be exponential (or a mixture of exponentials). 
To allow for the correlated structure of F(t) ,  the delayed viscous drag (given by the 
convolution terms in (1) and (2)) will depend on the velocity at all past instants so that 
the convolution integrals should both be extended to t = - E. However, by assuming 
that the behaviour described by (1) and (2) is independent of the actual time instant 
chosen for the lower limit of the integral, it is clear that we are making a kind of Marko- 
vian postulate. The consequence of this postulate is that the after-effect function k(t)  must 
be proportional to the autocorrelation function of the force, a theorem called the second 
fluctuation-dissipation theorem by Kubo (1966). It is then straightforward to show that 
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the velocity autocorrelation function is a mixture of two exponentials. Thus, let us 
assume that V(t )  obeys both (1) and (2) 

1 ?+ 5: V(s)k(t-s)  ds = F ( t )  

V(0) independent of F( t )  1 
dv(t)+ V(s)k(t-s)  ds = F(t )  dt J-, 

and let LIS further assume that F ( t )  obeys the simple Langevin equation (3) 

By substituting the expression for F ( t )  given by first (1) and then (2) into (3), we obtain 
expressions for V(t)  in terms of the stochastic force E(t). For example, using (1) we 
obtain 

d2 V 

and the expression derived using (2) is exactly this expression except that the lower limit 
in the convolution is - CO. If we require that the convolution term vanishes, irrespective 
of the value of the lower limit, it is clear that the integrand must vanish and this will be 
true provided k(t)  satisfies the same relation as the autocorrelation function for the 
force, namely, is of the form k(0) exp( -Pt).  Clearly the argument can be generalized to 
deal with any linear relation for the force F(t )  in terms of an uncorrelated force E(t). 
Roughly speaking if F(t )  has a correlation function R(z) which satisfies the (n - 1)th order 
linear differential equation (4), with constant coefficients, then the velocity will satisfy 
the nth order linear differential equation ( 5 )  with constants related to those in (4). 

(4) 

( 5 )  

Thus equations (1) and (2) give the same stochastic behaviour as (5) provided the memory 
function k(t)  is chosen to satisfy (4). However we can regard the velocity V(t )  from ( 5 )  
as being a projection of an n-dimensional Gaussian-Markov process whose components 
are, say, V(t )  and its time derivatives up to the (n - 1)th. Thus the stochastic description 
of V(t )  is completely given when we know the values of V(t)  and the appropriate deriva- 
tives at a given time. In a sense this contradicts the spirit of the generalizations (1) and (2) 
in which the velocity was supposed to depend on the whole past of V(t). Now, by thinking 
of a Taylor series expansion for V(t)  in the neighbourhood oft  = 0, a complete statement 
of the history of V(t)  would be contained in the specification of derivatives of V(t) of 
arbitrarily high order, whereas by using only the first (n - 1) derivatives we imply that 
only the immediate past is relevant. So by including derivatives of sufficiently high 
order in ( 5 )  it will be possible to account for correlations in V(t)  lasting over long times 
and with fairly complex structure. 

On the other hand, Sears (1969) has shown that adding more and more derivatives 
to the left side of ( 5 )  may not give much greater accuracy in representing either the 

R("-1)+an-,R'"-2'+ . . . +a& = 0 

V(")+b,-lV("-l)+ . . . +b,V = E(t). 
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correlation function R(t) or its Fourier transform the power spectrum P(w). If we define 
P(w) so that 

R(t) = P(w) exp( -iwt) dw s-== 
s 
s 
s 

it  is easily seen that the behaviour of R(t) near the origin t = 0 is described by giving the 
moments p m  of the spectrum 

R(0) = P(w)dw = ,u0 

iR'(0) = P(w)wdw = p 1  

- R"(0) = P(w)w' dw = ,U' 

etc. 

Now the continued fraction representation of Sears (1969) or Mori (1965) leads to an 
expression for R(t) as a mixture of n exponentials chosen so that all moments ,U,,, are 
given correctly up to the (2n-2)th. Thus the expression for P(w) in the nth long time 
approximation, as this is called, is a constant divided by a polynomial Q(w) of order n 
in w2, and this is exactly what is obtained for the spectrum P(w) derived from (5). In 
fitting these expressions to the velocity autocorrelation function for liquid argon as 
calculated from the computer experiments of Rahman (1964), Sears found that increasing 
the order of the polynomial Q(w) gave increasingly good agreement but the rate of 
convergence was rather slow. In this case, it is clear that the form of power spectrum is 
too restrictive giving increasingly good agreement near the time origin t = 0, but giving 
poor results for low frequencies and long time correlations. A more general form, 
capable of representing the Rahman data accurately with relatively few arbitrary 
constants, results from choosing the generalized Langevin equation (5a) 

(5a)  

This gives a spectrum which is a ratio of two polynomials in w2 of orders m and n re- 
spectively. Moments of orders up to (2n - 2m - 2) can be made equal to those calculated 
from the observed spectrum, leaving m arbitrary constants to be adjusted to get the 
best fit. Equation (5a) arises naturally when a system of coupled equations is considered, 
for example the itinerant oscillator models of Sears (1965) and Damle et a1 (1968). In 
any case the moment-fitting method only guarantees that the spectrum P(w) has its 
first (2n - 2)  moments correct. All higher order moments are infinite and are likely to 
have infinite error, so it would seem natural to relax the moment rules (as was done by 
Damle et a1 (1968)) so as to obtain better overall fit, especially for long time correlations. 
Since we are here concerned with the close relationship between the Gaussian-Markov 
properties and the fluctuationdissipation theorems, we will not discuss the merits of 
given approximations any further. The most general form for the correlation function 
of a Gaussian-Markov process of order n is given by (6) and we will illustrate the pro- 
cedure by solving the Langevin equation (5 ) .  

The correlation function appropriate to (5) can be found in a variety of ways. One 
way is to find the spectrum which will be a rational function of w2, where w is the fre- 
quency. By factorizing the spectrum and expressing it as a sum of partial fractions it 

VV(n)+bn-lV'("-l)+ . . . +boV = a m E ( m ) + a m - l E ( m - l )  + . . . + E .  
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can be shown that the correlation function is a sum of exponentials. We will assume that 
R(7) = (V( t )V( t  +z)) can be put in the form (or approximated by) 

The equation which R(z) must satisfy is obtained by setting t = t + z  in (3, multiplying 
both sides by V(t)  and averaging. Then R(z) satisfies (7)  

R'"'+b,-,R'"-''+ . . . +boR = 0 ( 7 )  

where we have used the fact that E(t+z)  is uncorrelated so that (V( t )E( t+z ) )  = 0. 
On substituting expression (6) for R(z) in (7),  we see that the equation will be satisfied 

for all T only if each of the exponentials in ( 6 )  satisfies (7),  and this means that each of the 
constants pi is to be a solution of (8) 

(8) 

This equation will have n roots, in general complex, and we will assume these are all 
different. The constants di in (6) can be chosen, for example, to satisfy the requirement 
of stationarity that R(z) should have odd derivatives equal to zero when z = 0, as well 
as satisfying the equipartition of energy result 

p+b,_,p"- l+ ... +bo = 0. 

R(0) = kT. 

For example, let us take n = 2 in (6) so that 

V/'2'+blV(1)+bOV = E@). 

Then there are two exponentials in the autocorrelation function for V ( t ) ;  with 

-b1+(Jb:-4b,)"2 
2 

p. = 

we get 

R(7) = kT{dl exp(B1z) +d2 exp(P2z)j. 

d,+d, = 1 

Pldl +B2d2 = 0 

Then the two conditions R(0) = kT and R'(0) = 0 give 

from which d ,  and d2 can be determined. The solution is given in full detail by Ming 
Chen Wang and Uhlenbeck (1945) who give not only the correlations for V(t),  I'(t) but 
give the complete derivation of all conditional averages for this system. These authors 
also use the Fokker-Planck equation to derive the averages. In our treatment we can 
derive, say, the autocorrelation function for v(t) by noting that 

( l i ( t )V(t  +z)) = - ( ~ ( t ) V ( t + z ) )  

= -R'2'(7). 

Having obtained the formula (6) for R(T), it is a simple matter to obtain a formal 
description of V ( t )  in terms of an n-dimensional Markov process. Let us use orthogonal 
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coordinates for the Markov process, in the sense that n variables Zi(t) are chosen to form n 
independent Gaussian-Markov processes each satisfying 

(zj(t)zi(t + 7 ) )  e x ~ ( P i l ~ l ) ~  

Then the projection V ( t )  is a linear combination of the Zi(t), namely 

V ( t )  = C cjiZi(t) 

In view of the relations to be satisfied by the constants di = cf,  it is clear that the c i  maj 
be imaginary in general. 

4. Molecular motion in liquids 

The molecular dynamics calculations of Rahman (1964) give an ideal opportunity for 
testing models of molecular motion. In applying these models however we should bear in  
mind two important results of Rahman’s work, namely, that the velocities of the par- 
ticles at a given time are distributed according to the Gaussian distribution, and that 
the distribution of the displacements r(t)-r(O) is not Gaussian for small times t. Now 
the latter result shows that the velocity of a molecule is not a Gaussian process whereas 
the former result, together with the ergodic hypothesis, shows that the one-point dis- 
tribution of velocity is Gaussian. In other words, although the joint distribution of 
V ( t , )  and V(t,) is not Gaussian, the one-point distribution of V( t , )  is Gaussian. 

Suppose V(t )  were Gaussian, that is, all n-point distributions are n-dimensional 
Gaussian, then 

r ( t ) - r (O)  = V ( S )  ds .$I 
is also a Gaussian process since it is linearly related to L’(t). However we have already 
said that r( t ) -r(0)  is not Gaussian so that V(t) cannot be Gaussian to all orders. On 
the other hand, for sufficiently long times t ,  r( t )  will approach Gaussianity by virtue of 
the central limit theorem, and the condition for this to hold is that the time t should 
be much greater than the correlation time of the velocity. In effect, this is the theorem 
that narrow band filtering of a stationary process results in a Gaussian process. 

The application of the simple Langevin equation, or for that matter the generaliza- 
tions discussed here, is contradictory unless we can relax the condition of Gaussianity. 
Unfortunately the central limit theorem can be applied to the solution of (6) since we 
are assuming E(t) to be uncorrelated. Thus it is necessary to include nonlinear effects in 
the equation of motion, or introduce non-Gaussianity into the force E(t) if the correla- 
tion time of E(t )  is comparable with that of V(t),  before we can get non-Gaussianity in 
r( t ) .  Indeed the nonlinearities in the equation of motion are responsible for energy 
transfer between spectral components at different frequencies, so that it is unlikely that 
a linear model will give the correct behaviour for either the spectral density or the 
probability distributions. Despite this there are some linear models with a high content 
of physically appealing ideas about molecular motion in liquids. The most notable of 
these are the Sears’ (1965) itinerant oscillator model of liquids and developments from 
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this model (Damle et a1 1968). In these models the coefficients appearing in the equations 
of motion are estimated from a knowledge of the pair correlation function g(r )  and the 
intermolecular potential (known for Rahman’s (1964) computer experiment). However 
the correlation function for the force is not known and is chosen to be exponential 
(Sears or Damle) or of the form exp( - /? t*)  (Damle). The choice of a particular form is 
made for computational convenience and has no physical significance. However, as 
we have seen, an exponential form leads to an interpretation as a projection of a Markov 
process and this fits naturally into normal Brownian motion theory. On the other hacd 
it is not clear if we can interpret the process with correlation function exp(-/?t2) as 
being Markov, since this would require a description of the velocity of the particle 
together with all its time derivatives. 

We can state the problem in a slightly more concrete fashion. When dealing with 
the motion of a molecule it is impossible to take into account all coordinates of all N 
molecules and we try to describe the motion by a small subsystem with a few degrees of 
freedom, this subsystem being immersed in a heat bath representing all other degrees 
of freedom. If only M degrees of freedom are required to describe our subsystem (or 
model) then the subsystem is an M-dimensional Markov process, and any one coordinate 
of the subsystem will be a projection. For example, a model due to Wyllie (1969 un- 
published), describes molecular motion as follows. A molecule is attached to a cage 
formed of near neighbours by an elastic force plus a damping term. The cage, supposed 
solid with mass M >> massm of a molecule, is undergoing Brownian motion in the 
usual way. Assuming isotropy, the motion is thus a three-dimensional Gaussian- 
Markov process, and from fitting the resulting formulae to Rahman’s data, it is possible 
to estimate the physical parameters used. Unfortunately these models tend not to be 
consistent since they predict an effective cage mass less than the molecular mass (eg 
Damle et a1 1968). 
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